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 CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH

 USING THE BOOTSTRAP

 JOSEPH FELSENSTEIN

 Department of Genetics SK-50, University of Washington, Seattle, WA 98195

 Abstract. -The recently-developed statistical method known as the "bootstrap" can be used
 to place confidence intervals on phylogenies. It involves resampling points from one's own
 data, with replacement, to create a series of bootstrap samples of the same size as the original
 data. Each of these is analyzed, and the variation among the resulting estimates taken to
 indicate the size of the error involved in making estimates from the original data. In the
 case of phylogenies, it is argued that the proper method of resampling is to keep all of the
 original species while sampling characters with replacement, under the assumption that the
 characters have been independently drawn by the systematist and have evolved indepen-
 dently. Majority-rule consensus trees can be used to construct a phylogeny showing all of
 the inferred monophyletic groups that occurred in a majority of the bootstrap samples. If
 a group shows up 95% of the time or more, the evidence for it is taken to be statistically
 significant. Existing computer programs can be used to analyze different bootstrap samples
 by using weights on the characters, the weight of a character being how many times it was
 drawn in bootstrap sampling. When all characters are perfectly compatible, as envisioned
 by Hennig, bootstrap sampling becomes unnecessary; the bootstrap method would show
 significant evidence for a group if it is defined by three or more characters.

 Received July 12, 1984. Accepted April 12, 1985

 It is rare that any attempt is made to
 put a confidence interval on an estimate
 of a phylogeny. Most methods for infer-
 ring phylogenies yield one or a few trees,
 and their users rarely go beyond exam-
 ining the variation among trees that are
 tied with the best tree under whatever
 criterion is being employed. There is no
 reason to believe that this practice con-
 stitutes an adequate exploration of the
 size of the confidence limits on the esti-
 mate.

 A few authors have explored the ques-
 tion of confidence limits on phylogenies.
 The pioneer in doing so is Cavender
 (1978, 1981) who examined the confi-
 dence limits for a four-species case, in
 terms of how many steps worse a tree
 must be than the most parsimonious tree
 to be significantly worse. His results were
 a bit disconcerting: when inferences were
 based on twenty characters, a tree would
 have to be 9 steps worse to be signifi-
 cantly worse. This implies that the con-
 fidence intervals would be quite large.

 Templeton (1983) has constructed a
 test of whether one tree is significantly
 better supported than another. In prin-
 ciple such a test could be used to delimit

 a confidence interval by finding all trees
 that cannot be rejected in comparison
 with the best supported tree. I have re-
 cently extended Cavender's analysis to
 the case of a molecular clock with three
 species, obtaining, in that case, confi-
 dence limits that were somewhat smaller
 than Cavender's (Felsenstein, 1985). I
 have also recently reviewed the appli-
 cation of statistics to inferring phyloge-
 nies (Felsenstein, 1 983a); that paper may
 be consulted for earlier references on sta-
 tistical estimation of phylogenies.

 An important recent statistical method
 is the bootstrap (Efron, 1979), a relative
 of the jackknife. Like the jackknife, it is
 a method of resampling one's own data
 to infer the variability of the estimate.
 This paper will explore the use of the
 bootstrap in inferring phylogenies, where
 it leads to a practical method for placing
 confidence intervals on the estimates.

 The Bootstrap

 A straightforward statistical exposition
 of the bootstrap is given by Efron and
 Gong (1983), and a readable elementary
 treatment is that by Diaconis and Efron
 (1983). The basic idea of the bootstrap
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 involves inferring the variability in an
 unknown distribution from which your
 data were drawn by resampling from the
 data. Suppose that you had data points
 xl, x2, . . ., xn, which you are willing to
 assume were drawn independently from
 the same distribution. From these, ap-
 plying some method T of statistical es-
 timation, we obtain an estimate

 t = T(x1, x2, . . . *,x) (1)

 of a parameter we are interested in. If we
 knew the exact distribution from which
 the xi were drawn, and if the function T
 were sufficiently tractable algebraically,
 we could obtain a formula for the stan-
 dard error of the estimate t, and also con-
 struct confidence intervals for t.

 The bootstrap procedure is most useful
 when we either do not know the distri-
 bution of the xi, or when T is so com-
 plicated that its standard error is difficult
 to compute. It suggests that we resample
 our data to construct a series of fictional
 sets of data. Each of these is constructed
 by sampling n points from the x1, sam-
 pling with replacement. Each such fic-
 tional data set consists of n points, xl*,
 ... , xn* where each point xi* is drawn at
 random from among the n original data
 points. It is quite likely that, in this re-
 sampling process, some of the original
 data points are represented more than
 once, and others are omitted.

 For each fictional set of data, we com-
 pute the estimate

 t* = T(xl*, x2*, ... *, xn*). (2)

 The resampling process is done many
 times (say r times), each time producing
 a fictional sample of n points by sampling
 with replacement from the original n data
 points. For each the estimate t* is com-
 puted. We are then in possession of a
 collection of r estimates of the parameter.
 The essential idea of the bootstrap is that
 this set of estimates has a distribution
 that approximates the distribution of the
 actual estimate t. A bias-corrected esti-
 mate of the parameter can be computed
 by averaging the r different t* values (Ef-
 ron and Gong, 1983). The variance of t

 can be inferred by computing the vari-
 ance of this collection of t* values, and
 the confidence limits on the parameter
 can be approximated by using the appro-
 priate upper and/or lower percentiles of
 the observed distribution of the t* values.

 The justification for this resampling is
 that, if the original sample size n is large,
 each possible value of x will be repre-
 sented in the same proportion as in the
 underlying distribution, and resampling
 from the data points with replacement
 will be the same as sampling from the
 underlying distribution. For smaller
 sample sizes, the process is an approxi-
 mation but frequently is a very good one.
 The monograph by Efron (1982) can be
 consulted for further details on the prop-
 erties of the bootstrap.

 Bootstrapping Phylogenies

 How can the bootstrap be applied to
 phylogenies? Instead of sample points xl,

 x2, ..-, xn we usually have a table of
 species x characters (or species x sites
 for molecular sequences). It is not im-
 mediately obvious how resampling can
 be done in the data table. I will argue that
 a justifiable procedure is to bootstrap
 across the characters, that is, to sample
 characters (or sites) from the data table
 with replacement. Thus, each bootstrap
 sample consists of a new data table with
 the same set of species, but with some of
 the original characters duplicated and
 others dropped by the process of sam-
 pling n characters from the original set
 with replacement.

 The justification for this is that we can
 view each character as having evolved
 independently from the others according
 to a stochastic process that has among its
 parameters the topology and branch
 lengths of the underlying phylogeny. Each
 character is then a random sample from
 a distribution of all possible configura-
 tions of characters. For example, if we
 are considering nucleic acid sequence data
 with p species, there are 4P possible out-
 comes at each site, not counting the pos-
 sibilities of deletion and insertion. To a
 first approximation we can consider each
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 site to be independently drawn from a
 distribution with 4P possibilities, whose
 probabilities depend on the phylogeny we
 are trying to estimate.

 Given this independence of evolution-
 ary processes in different characters, the
 configurations in the characters are seen
 to be drawn independently and identi-
 cally distributed (i.i.d.), a necessary con-
 dition for the bootstrap method to be val-
 id. In fact, in the case of discrete character
 states (such as nucleic acids), the under-
 lying distribution is multinomial, since
 there are 4P possibilities each of which
 has some probability of occurring. De-
 spite the complexity of the structure being
 inferred (the phylogeny) the statistical
 model is a very straightforward one-in-
 dependent samples from a multinomial
 distribution.

 It might be argued that this presup-
 poses that the same probabilistic evolu-
 tionary process is operating in all of the
 characters, which is extremely unrealis-
 tic. Such an assumption is not necessary.
 If instead we had a variety of different
 kinds of characters evolving according to
 different processes, we need only imagine
 that there is an additional stage in the
 process of random sampling, one occur-
 ring in the mind of the systematist. We
 imagine, as part of the stochastic process,
 a step in which the systematist randomly
 draws each character from a pool of dif-
 ferent kinds of characters, each kind hav-
 ing a different evolutionary process that
 applies to it. Once drawn, each character
 then has its actual configuration deter-
 mined by the appropriate stochastic evo-
 lutionary process. The resulting distri-
 bution of character configurations is a
 mixture of multinomial distributions,
 and, as such, is still a multinomial dis-
 tribution and is still i.i.d.

 In practice the systematist may not
 have sampled the characters at random.
 Systematists frequently include charac-
 ters in the study in groups (such as groups
 of measurements on the skull). We are
 then not justified in regarding the process
 of choice of characters as a series of ran-
 dom samples from a pool of possible

 characters. I have recently discussed (Fel-
 senstein, 1983a) some of the statistical
 issues involved in such a random-sam-
 pling model of inference of phylogenies.

 A more serious difficulty is lack of in-
 dependence of the evolutionary process-
 es in different characters. If the characters
 are correlated (as measurement charac-
 ters often are), then, in effect, we have
 fewer characters in the study than we be-
 lieve. If correlations mean that what ap-
 pear to be 50 independent characters are
 really more like 30, the variability that
 we infer for our estimate will be too small,
 producing overconfidence in the result; a
 bootstrap involving sampling 30 char-
 acters at random from among the 50
 would have been more appropriate,
 though there is no way to know this in
 advance. For the purposes of this paper,
 we will ignore these correlations and as-
 sume that they cause no problems; in
 practice, they pose the most serious chal-
 lenge to the use of bootstrap methods.

 A similar problem can arise when mul-
 tistate characters have been recoded into
 binary "factors" that are then treated as
 if they were independent two-state char-
 acters. These cannot be completely in-
 dependent, as they would have to be if
 the bootstrap sampled them indepen-
 dently. Walter Fitch (pers. comm.) has
 suggested that this problem can be avoid-
 ed by retaining a record of which binary
 factors are associated with which of the
 original characters, and having the boot-
 strap sample the original characters and
 keep all of the binary factors of a char-
 acter together. Thus, if there were nine
 characters that had been expanded to 20
 binary factors, we would construct the
 bootstrap sample by drawing nine times
 from the nine characters, and whenever
 a character was drawn we would take care
 to put all of its binary factors into the
 bootstrap sample.

 Confidence Limits on Phylogenies

 An interesting problem arises when we
 begin to consider how to construct con-
 fidence limits on the phylogenies. Each
 bootstrap sample is a data set that must
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 be analyzed to obtain an estimate of the
 phylogeny. We then have r phylogenies.
 Each of these is a complicated multi-
 variate entity that has a tree topology and
 may also have branch lengths. Defining
 a confidence interval and summarizing it
 in a useable form is far from a simple
 matter.

 In bootstrapping, confidence limits on
 a statistic are frequently constructed by
 the percentile method, which involves
 simply taking (for a 95% confidence in-
 terval) the empirical upper and lower
 2.5% points of the distribution of boot-
 strap estimates of the statistic. Consider
 testing whether the probability of heads
 of a tossed coin exceeds 0.50. If we did
 not know about the binomial distribu-
 tion and decided instead to use the boot-
 strap, a one-sided confidence interval on
 the probability of heads could be con-
 structed by finding the empirical lower
 5% point of the distribution of bootstrap
 estimates. The set of values less than 0.50
 would therefore be rejected if values of
 the estimated probability of heads that
 small or smaller occurred less than 5%
 of the time among the bootstrap esti-
 mates.

 The approach used here starts with the
 assumption that the systematist is pri-
 marily interested in whether some par-
 ticular group is monophyletic. A rooted
 tree is a series of statements asserting
 monophyly of a series of nested or dis-
 joint sets of species. Suppose that we are
 interested in a subset S of species and
 wish to know whether there is significant
 support in the data for the assertion that
 this group is monophyletic. We can reject
 the alternatives to the subset S if they
 occur in less than 5% of the bootstrap
 estimates.

 We thus wish to search for all subsets
 S of species that occur on 95% or more
 of the bootstrap estimates. Each of these
 subsets may be considered to be sup-
 ported (in the sense that its alternatives
 are rejected), although those confidence
 statements are not joint confidence state-
 ments: if two subsets are each supported
 at the 95% level, we might have as little
 as 90% confidence in the statement that

 they are both present in the true tree. But
 at least they cannot be contradictory: each
 being present on at least 95% of the
 bootstrap estimated trees, they must co-
 occur on at least one of the trees and must
 thus be either nested or disjoint.

 The same argument has been used by
 Margush and McMorris (1981) to define
 "majority rule" consensus trees. These
 are trees composed of all those subsets
 that appear in a majority of a collection
 of trees. By the argument just given, these
 subsets must define a tree, since no two
 of them can conflict. If we take the set of
 phylogenies that result from analyzing a
 series of bootstrap samples and make a
 majority-rule consensus tree, recording
 on it how often each subset appears, we
 will obtain a tree that can be used to de-
 fine at a glance confidence sets for any
 rejection probability below 50%. The
 majority-rule consensus tree itself can be
 considered to be an overall bootstrap es-
 timate of the phylogeny.

 In cases where we are using a statisti-
 cally well-founded method, such as max-
 imum likelihood estimation, we would
 hope that the bootstrap method and the
 curvature of the likelihood surface would
 give similar indications of which parts of
 the phylogeny were well estimated and
 which not. Where the method of inferring
 phylogenies is one with undesirable sta-
 tistical properties such as inconsistency,
 the bootstrap does not correct for these.
 For example, clustering by overall sim-
 ilarity makes an inconsistent estimate of
 the phylogeny if rates of evolution in dif-
 ferent lineages differ by more than a cer-
 tain amount. Parsimony methods are
 subject to the same problem, but require
 greater inequalities of evolutionary rate
 to be inconsistent. For an elementary dis-
 cussion of these phenomena, see my re-
 cent review article (Felsenstein, 1 983b).
 Bootstrapping provides us with a confi-
 dence interval within which is contained
 not the true phylogeny, but the phylogeny
 that would be estimated on repeated
 sampling of many characters from the
 underlying pool of characters. As such it
 may be misleading if the method used to
 infer phylogenies is inconsistent.
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 TABLE 1. Fossil horse data of Camin and Sokal (1965). The states of each character are in a linear series.

 -1, 0, 1, 2, . . ., with the ancestral state being 0. The data are also shown in binary recoded form in
 which the nine multistate characters have been recoded into 20 binary factors. The first line of that table
 indicates the correspondence between the original and recoded characters. Bootstrap sampling of characters
 should be done before any recoding into binary factors.

 Binary Factors

 Name Characters 11112 22333 44566 77889

 Mesohippus 0 0 0 0 0 0 0 0 0 00000 00000 00000 00000
 Hypohippus -1 3 3 0 0 0 0 0 1 00011 11111 00000 00001
 Archaeohippus 1 0 0 0 0 0 0 1 1 10000 00000 00000 00101
 Parahippus 1 1 1 1 0 0 0 0 1 10001 00100 10000 00001
 Merychippus 2 2 2 2 1 1 1 2 1 11001 10110 11110 10111
 Merych. secundus 2 2 2 2 1 -1 -1 2 1 11001 10110 11101 01111
 Nannippus 2 2 1 2 1 1 1 2 1 11001 10100 11110 10111
 Neohipparion 2 3 3 2 1 1 1 2 1 11001 11111 11110 10111
 Calippus 2 2 1 2 1 -1 -1 2 1 11001 10100 11101 01111
 Pliohippus 3 3 3 2 1 -1 -1 2 1 11101 11111 11101 01111

 One difficulty in the interpretation of
 the result is that we may not have decided
 which subset of species interests us until
 after the bootstrap result is examined.
 This raises the "multiple tests" problem:
 if we have 20 statistical tests, on average
 one should show significance at the 95%
 level purely at random. There are ways
 of making simple corrections if the num-
 ber of independent tests is known, but in
 this case the different tests (the different
 subsets that show up on the majority-rule
 consensus tree) are probably correlated,
 so that it is not easy to see how to com-
 pute the number of independent tests so
 as to correct for it. I have simply taken
 the 95% level as correct, as if we had
 chosen the test of interest a priori.

 One might wonder whether the jack-
 knife would be a viable alternative to the
 bootstrap. If we make a set of estimates
 by dropping one character at a time and
 then estimating the phylogeny, the re-
 sulting phylogenies will vary far less than
 the bootstrap estimates do. In the simple
 test case of sample averages estimating
 the mean of a normal distribution, it
 turns out that the jackknife estimates
 of the mean will have a variance only

 n21(n- 1)3 times as large as that of the
 corresponding bootstrap estimates (Ef-
 ron and Gong, 1983). To make the vari-
 ance among the jackknife estimates as
 large as that among bootstrap estimates,

 one would have to engage in an extrap-
 olation to make their variance larger. The
 difficulty in envisaging a procedure like
 this is that the space of possible phylog-
 enies does not lend itself readily to ex-
 trapolation: once a branch length has
 shrunk to zero it is not immediately ob-
 vious what to do next. Unlike normal
 means, phylogenies do not live in a flat
 Euclidean space. One way to make the
 jackknife vary as much as the bootstrap
 would be to drop not one observation,
 but half the observations chosen at ran-
 dom. This possibility is worth exploring,
 but for the moment it is not obvious what
 advantage there would be to using the
 jackknife rather than the bootstrap.

 Using Existing Computer Programs

 The process of generating many boot-
 strap samples from a data set is a tedious
 one. One might think that it would re-
 quire special programs to rewrite the data
 matrix, leaving out some characters and
 duplicating others. Fortunately, much of
 that work can be avoided by making use
 of differential character weights, which
 are allowed in most computer programs
 for inferring phylogenies, particularly
 programs using parsimony methods.
 These programs usually allow integer
 weights for the characters, weights that
 can be 0, 1, 2, .... A weight of zero
 means that the character is in effect
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 dropped from the analysis. A weight of
 w means that the character is counted as
 if present w times, so that each change of
 state in the character is counted as if it
 were w changes of state.

 This automatically accomplishes the
 duplication and deletion of characters
 without the necessity of recopying the
 data matrix. Different bootstrap samples
 could be fed into the programs by doing
 computer runs with different weights. The
 weights are generated by starting with
 weights of zero for all characters. We then
 sample n characters at random with re-
 placement (using a table of random num-
 bers, for example). Each time a character
 is drawn, its weight is increased by one,
 so that in the end its weight counts the
 number of times it was sampled. Here
 are five of the weight vectors that were
 generated when bootstrap sampling was
 done on 20 characters:

 21100212120121012010
 01001510031020011211
 01031211201012100121
 12130421030000100101
 20010100211211121211

 To do bootstrap sampling, one would
 generate a vector of weights, run the phy-
 logeny estimation program with those
 weights, generate another vector of
 weights, run the program with those, and
 so on. The process is fairly tedious, al-
 though with microcomputers it need not
 be expensive. In the fossil horse example
 below, I have used 50 bootstrap samples.
 This might strike a statistician as too few,
 but a systematist as too many. The more
 samples are taken, the more accurate an
 idea we will have of which groups are
 likely to be monophyletic. Even with a
 small number of bootstrap samples we
 will quickly get a feel for which parts of
 our estimate of the phylogeny are well
 supported and which not.

 A computer program that carries out
 bootstrap sampling and computes the
 majority rule consensus tree is available
 for the case of discrete characters ana-
 lyzed by the parsimony and compatibil-
 ity methods. It is contained in the pro-

 gram package PHYLIP, available free
 from me (see the Appendix below).

 An Example

 Table 1 shows the fossil horse data giv-
 en by Camin and Sokal (1965 pp. 321-
 322) as a computational example. The

 full list of species and references for the
 original data are given by Camin and So-
 kal (1965). The data set has ten species
 and nine multistate characters. Mesohip-
 pus has been taken as the outgroup, as it
 was in Camin and Sokal's paper.

 Figure 1 shows the results of running
 a branch-and-bound program that finds
 all most parsimonious trees according to
 the Wagner parsimony criterion. There
 are ten most parsimonious trees. The left
 tree in Figure 1 shows nine of them: the
 two empty circles with three descendants
 represent not trifurcations, but points at
 which the tree can be resolved into any
 of three bifurcating topologies. All nine
 possible combinations of these are in the
 list of most parsimonious trees. The tenth
 tree is the one shown at the right of Figure
 1. All of these trees require 29 changes
 of character state.

 If we were to take the variation among
 the most parsimonious trees as providing
 an adequate indication of the uncertainty
 in our estimate of the phylogeny, we
 would conclude that four monophyletic
 groups were defined, as these groups show
 up in all ten of the most parsimonious
 trees. They are:

 (Pliohippus, Merychippus secundus,
 Calippus)

 (Nannippus, Neohipparion, Merychip-
 pus)

 (Pliohippus, Merychippus secundus,
 Calippus, Nannippus, Neohippa-
 rion, Merychippus)

 (all but Mesohippus and Archaeohip-
 pus)

 When we carry out bootstrap sampling
 of columns from the left-hand part of Ta-
 ble 1 and analyze 50 bootstrap replicates,
 we get the results shown in Figure 2. Next
 to each branch of the tree is shown the
 number of times that the bootstrap es-
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 FIG. 1. All most parsimonious trees for the fossil horse data in Table I when phylogenies are evaluated
 by the Wagner parsimony criterion. There are ten most parsimonious trees in all. Nine of these can be
 generated by resolving each of the trifurcations in the left tree into all three possible bifurcations. The
 tenth is shown in the right tree. All abbreviations are first three letters of names in Table 1, except MSE =
 Merychippus secundus.

 timate contained the corresponding
 monophyletic group. The tree shown is
 the majority-rule consensus tree. The
 consensus tree turns out in this case not
 to be one of the most parsimonious trees.
 All four of the monophyletic groups list-
 ed above occur on it, but only one of
 these (the six-species group consisting of
 Pliohippus, Merychippus secundus, Ca-
 lippus, Nannippus, Neohipparion, and
 Merychippus) comes close to occurring
 95% of the time in the bootstrap sam-
 pling (it occurs 47/50 or 94% of the time).
 The others only occur about two-thirds
 of the time. It is apparent that taking the
 set of most parsimonious trees as defin-
 ing the confidence interval would result
 in far too narrow an interval.

 The example given here has had the
 tree rooted by use of an outgroup. If we
 were using a method that produced an
 unrooted tree and had no outgroup in-

 formation or other method of rooting the
 tree, we could still carry out bootstrap
 sampling and construct an unrooted ma-
 jority-rule consensus tree. To do that, we
 would only need to note that each branch
 of one of the replicate bootstrap esti-
 mates divides the species into two groups,
 at least one of which would be mono-
 phyletic if we could root the tree. The
 unrooted majority-rule consensus tree is
 defined by finding those partitions that
 occur in a majority of the replicate trees.
 A simple way of doing this is to choose
 an arbitrary species as an outgroup, make
 a majority-rule consensus tree of the re-
 sulting rooted trees, and then present the
 result as an unrooted tree without indi-
 cating which species was the outgroup.

 Perfectly Hennigian Data

 Occasionally, though rather rarely, a
 data set will arise that has no internal
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 FIG. 2. Bootstrap estimate of the phylogeny for
 the data of Table 1 when phylogenies are evaluated
 by the Wagner parsimony criterion. Fifty bootstrap
 samples were analyzed. The groups shown in this
 tree are those that occurred in a majority of the
 resulting trees, plus the most frequently occurring
 groups that were compatible with these. Next to
 each branch is shown the number of times that the
 monophyletic group it defines occurred. Further ex-
 planation is given in the text.

 conflict, all characters being perfectly
 compatible. This sort of data, which is
 that envisioned by Hennig when he sug-
 gested using derived character states to
 define monophyletic groups, allows us to
 avoid entirely the bootstrap sampling
 process. The argument is quite simple.
 Suppose that we want to construct a 95%
 confidence interval by bootstrap sam-
 pling. Suppose that c characters out of n
 define the same monophyletic group.
 That group will show up in the bootstrap
 estimate if any one of those c characters
 is drawn in the sampling of n characters.
 The monophyletic group will be part of
 the 95% confidence interval if and only
 if the probability of omitting all c of the

 characters is less than 0.05. This is easily
 computed, given n and c.

 The probability of leaving out all c
 characters in drawing n characters with-
 out replacement is (1 - c/n)n . The value
 of c that is necessary to make this less
 than 0.05 is the same for all relevant val-
 ues of n: it is c = 3. We can thus conclude
 that, if the data are perfectly Hennigian,
 three characters are enough for the boot-
 strap to indicate significant support for a
 monophyletic group at the 95% level. Any
 group supported by fewer characters will
 not be in the bootstrap confidence inter-
 val. Of course, we are assuming that the
 evolutionary processes and the inclusion
 of the characters by the systematist are
 independent across characters.

 Although three characters are enough
 to guarantee inclusion of a group, if the
 data are perfectly Hennigian, one will
 never encounter any character that con-
 tradicts the group. Sometimes we have
 great confidence that our characters are
 ".clean" ones, that reversals and paral-
 lelisms would be so rarely seen that we
 can have confidence in a group even if it
 is supported by only one character. The
 present "rule of three" would then seem
 to be a conservative one.

 It may be doubted that the rule is really
 always conservative. I have recently
 studied, by exact enumeration methods,
 the problem of placing confidence limits
 on phylogenies using parsimony meth-
 ods when there are only three species and
 an evoutionary process for which an evo-
 lutionary clock may be assumed (Felsen-
 stein, 1985). It turns out that in the worst
 case, when the characters are equally
 likely to resolve a trifurcation in any of
 the three possible ways, if we have three
 characters all of which support the same
 resolution, this is not statistically signif-
 icant at the 95% level. Four characters
 would be. (I am indebted to Alan Tem-
 pleton for pointing out the connection
 between the two calculations.)

 In many cases, strong conclusions have
 been drawn from the existence of groups
 defined by as little as one character. The
 great advantage of the present approach
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 is that it provides a practical method,
 albeit a flawed one, for assessing the un-
 certainty inherent in such conclusions. I
 suspect that the levels of uncertainty
 found in practice will be so great as to
 give pause to all but the firmest expo-
 nents of nonstatistical hypothetico-de-
 ductive approaches to inferring phylog-
 enies.
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 APPENDIX

 Availability of the PHYLIP
 Program Package

 PHYLIP, the Phylogeny Inference Package, is a
 free package of computer programs, written in Pas-
 cal, for inferring phylogenies. It includes parsimony
 methods, compatibility methods, distance matrix
 methods, and maximum likelihood methods. The
 Pascal source code is provided (compiled object
 code is not). PHYLIP will be written in a standard
 format on a magnetic tape provided by the recip-
 ient. It will also be provided on 51/4-inch diskettes
 if 6 double density diskettes are sent. A variety of
 soft-sectored MSDOS, CP/M-80, and CP/M-86
 formats can be written; double-sided, hard-sec-
 tored, or 3.5-inch formats cannot, nor can any Ap-
 ple formats. For information on formats supported
 and restrictions on countries to which distribution
 and support are available, please write the author.
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